The Multiple Knapsack Problem Approached by a Binary Differential Evolution Algorithm with Adaptive Parameters

نویسندگان

  • Leanderson André
  • Rafael S. Parpinelli
چکیده

In this paper the well-known 0-1 Multiple Knapsack Problem (MKP) is approached by an adaptive Binary Differential Evolution (aBDE) algorithm. The MKP is a NP-hard optimization problem and the aim is to maximize the total profit subjected to the total weight in each knapsack that must be less than or equal to a given limit. The aBDE self adjusts two parameters, perturbation and mutation rates, using a linear adaptation procedure that changes their probabilities at each generation. Results were obtained using 11 instances of the problem with different degrees of complexity. The results were compared using aBDE, BDE, a standard Genetic Algorithm (GA) and its adaptive version (aGA), and an island-inspired Genetic Algorithm (IGA) and its adaptive version (aIGA). The results show that aBDE obtained better results than the other algorithms. This indicates that the proposed approach is an interesting and a promising strategy to control the parameters and for optimization of complex problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Binary Differential Evolution with Parameter Adaptation

Differential Evolution (DE) has been applied to many scientific and engineering problems for its simplicity and efficiency. However, the standard DE cannot be used in a binary search space directly. This paper proposes an adaptive binary Differential Evolution algorithm, or ABDE, that has a similar framework as the standard DE but with an improved binary mutation strategy in which the best indi...

متن کامل

An adaptive quantum-inspired differential evolution algorithm for 0-1 knapsack problem

Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces. However, the design of its operators makes it unsuitable for many real-life constrained combinatorial optimization problems which operate on binary space. On the other hand, the quantum inspired evolutionary algorithm (QEA) is ver...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

APPROXIMATE ALGORITHM FOR THE MULTI-DIMENSIONAL KNAPSACK PROBLEM BY USING MULTIPLE CRITERIA DECISION MAKING

In this paper, an interesting and easy method to solve the multi-dimensional  knapsack problem is presented. Although it belongs to the combinatorial optimization, but the proposed method belongs to the decision making field in mathematics. In order to, initially efficiency values for every item is calculated then items are ranked by using Multiple Criteria Decision Making (MCDA).  Finally, ite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Polibits

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2015